Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖДАЮ Директор ВШТЭ

Рабочая программа дисциплины

Б1.О.20	Физиче	еская химі	1Я				
Учебный план:			ΦΓΟC3++z1	80302-23	_23-	-15.plx	
Кафедра:	2	Физическо	ой и коллоидною	й химии			
Направление по	одготовки: зальность)	18.03.02 3	Энерго- и ресур	сосберега	ающ	ие процессы в хи	мической
(опеци	ісі іві ісству	технологии, нефтехимии и биотехнологии					
Профиль по	•	Охрана	окружающей	среды	И	рациональное	использование
(специа	лизация)	природны	х ресурсов				
Уровень обр	азования:	бакалаврі	иат				
Форма обучения:		заочная					

План учебного процесса

Семе	Контактная работа обучающихся		Сам.	Контроль,	Трудоё	Форма		
(курс для	3AO)	Лекции	Практ. занятия	Лаб. занятия	работа	час.	мкость, ЗЕТ	промежуточной аттестации
3	УП	4		8	92	4	3	Зачет
3	РПД	4		8	92	4	3	Sayer
4	УП	4	2	8	121	9	4	Экзамен
4	РПД	4	2	8	121	9	4	Экзамен
Итого	УП	8	2	16	213	13	7	
VITOIO	РПД	8	2	16	213	13	7	

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии, утверждённым приказом Минобрнауки России от 07.08.2020 г. № 923

Составитель (и):	
Доктор технических наук, заведующий кафедрой	Липин В.А.
Кандидат химических наук, доцент старший преподаватель	Смирнова А.И. Пошвина Т.А.
От кафедры составителя: Заведующий кафедрой физической и коллоидной химии	Липин В.А.
От выпускающей кафедры: Заведующий кафедрой	Шанова О.А.
Методический отдел:	Смирнова В.Г.

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Сформировать компетенции обучающегося в области физической химии, в умении определять принципиальную возможность осуществления и сознательно управлять химическими и технологическими процессами, целостного представления о процессах и явлениях в живой и неживой природе, овладение основами физической химии для использования в профессиональной и познавательной деятельности.

Формирование творческого мышления, объединение фундаментальных знаний основных законов и методов проведения физико-химических исследований, с последующей обработкой и анализом результатов исследований.

Формирование навыков самостоятельного проведения теоретических и экспериментальных физико-химических исследований.

1.2 Задачи дисциплины:

Рассмотреть и объяснить закономерности, определяющие направленность химических процессов, скорость их протекания, влияние на них среды, а также условия получения максимального выхода продукта и получения новых материалов с необходимыми свойствами;

Раскрыть принципы теоретических и экспериментальных физико-химических методов (термодинамических, кинетических, электрохимических) для решения практических задач профессиональной направленности.

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Общая и неорганическая химия

Физика

Материаловедение в технологии переработки полимеров

Аналитическая химия и физико-химические методы анализа

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-1: Способен изучать, анализировать, использовать механизмы химических реакций, происходящих в технологических процессах и окружающем мире, основываясь на знаниях о строении вещества, природе химической связи и свойствах различных классов химических элементов, соединений, веществ и материалов

Знать: основные законы и соотношения физической химии (химической термодинамики, электрохимии, химической кинетики, основы фазовых равновесий и переходов), способы их применения для решения теоретических и прикладных задач, роль физической химии как теоретического фундамента современной химии и процессов химической технологии.

Уметь: прогнозировать влияние различных факторов на химическое равновесие, на фазовое равновесие, на равновесие в растворах электролитов, на потенциал электродов и ЭДС гальванических элементов, на направление и скорость химических реакций; составлять кинетические уравнения для кинетически простых реакций, классифицировать электроды и электрохимические цепи, пользоваться справочной литературой по физической химии.

Владеть: навыками проведения типовых физико-химических исследований и навыками решения типовых задач в области химической термодинамики, фазовых равновесий и фазовых переходов, электрохимии, химической кинетики.

ОПК-2: Способен использовать математические, физические, физико-химические, химические методы для решения задач профессиональной деятельности

Знать: законы физической химии, закономерности протекания и равновесия отдельных классов химических реакций и связь этих закономерностей с особенностями внутреннего строения молекул отдельных групп химических соединений.

Уметь: использовать законы физической химии, термодинамические справочные данные и результаты физико-химического эксперимента для определения направления химических реакций, для вычисления равновесного выхода продуктов, определения тепловых эффектов реакций; определения констант скоростей химических реакций различных порядков и энергии активации и использовать полученные результаты для решения задач профессиональной деятельности.

Владеть: навыками анализа и расчета термодинамических параметров физико-химических процессов, методикой и техникой лабораторного эксперимента.

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

		Контакть	ная работ	а		
Наименование и содержание разделов, тем и учебных занятий	Семестр (курс для 3AO)	Лек. (часы)	Пр. (часы)	Лаб. (часы)	СР (часы)	Инновац. формы занятий
Раздел 1. Термодинамика и кинетика						
Тема 1. Основы химической термодинамики. Первое начало термодинамики. Термодинамические системы и термодинамические параметры. Тепловой эффект, закон Гесса. Уравнение Кирхгофа. Второе начало термодинамики. Энтропия как критерий направления самопроизвольных процессов в изолированных системах. Термодинамические потенциалы как критерий направления и предела протяжения процессов в закрытых системах. Лабораторная работа: Определение интегральной теплоты растворения соли. Определение теплоты нейтрализации сильной щёлочи сильной кислотой. Определение концентрации кислоты Лабораторная работа: Определение удельной теплоёмкости растворов Лабораторная работа: Определение удельной теплоты испарения жидкостей	3	1		7	20	
Тема 2. Химическая кинетика. Определение понятия скорости химической реакции в связи с кинетической классификацией химических процессов. Стадии протекания сложных реакций.					20	
Тема 3. Химическое равновесие. Система переменного состава. Термодинамические условия равновесия в системах переменного состава. Способы выражения термодинамических констант для гомогенных и гетерогенных реакций. Вычисление состава равновесной смеси, выхода продукта, степени превращения, степени диссоциации.		1			20	
Раздел 2. Свойства растворов и фазовые равновесия						

Тема 4. Общие свойства растворов. Уравнение состояния идеального и реального газов. Термодинамическая классификация растворов (растворы идеальные, реальные, предельно разбавленные растворы неэлектролитов и электролитов). Лабораторная работа: Построение диаграммы температура кипения — состав для неограниченно смешивающихся жидкостей				1	14	
Тема 5. Термодинамика растворов. Аддитивные (энтальпия, объем, теплоемкость) и неаддитивные свойства (энергия Гиббса, энтропия) идеальных растворов. Закон Рауля. Химический потенциал компонента идеального и реального раствора. Эбуллиоскопия, криоскопия, осмотическое давление.		2			18	
Итого в семестре (на курсе для ЗАО)		4		8	92	
Консультации и промежуточная аттестация (Зачет)			0,25			
Раздел 3. Теория растворов						
Тема 6. Фазовые равновесия. Многокомпонентные системы. Гетерогенные равновесия. Фазовые равновесия. Условия термодинамического равновесия в многофазных многокомпонентных системах. Правило фаз Гиббса. Азеотропные смеси. Расчет с использованием правила рычага. Типы диаграмм в зависимости от характера взаимодействия в твердом и жидком состоянии. Простейшие типы диаграмм состояния. Определение молярной рефракции и парахора.	4		2		30	ГД

T 7 D	1	1		
Тема 7. Растворы электролитов. Равновесия и явления переноса в растворах электролитов. Электрическая проводимость растворов. Числа переноса, способы их определения. Зависимость степени диссоциации слабых электролитов от концентрации, закон разведения Оствальда. Стандартное состояние в растворах электролитов. Основные положения теории сильных электролитов Дебая-Хюккеля. Ионные равновесия: ионное произведение воды, рН, особенности рН в неводных средах, гидролиз, сольволиз, растворимость малорастворимых солей. Ионные равновесия расплавов электролитов. Твердые электролиты. Лабораторная работа: Определение удельной электропроводности растворов электролитов и расчёт характеристик этих растворов. Расчёт произведения растворимости. Кондуктометрическое титрование с целью определения количества кислоты Лабораторная работа: Потенциометрическое титрование. Определение рН буферного раствора		6	31	
Раздел 4. Электрохимические процессы				
·				
Тема 8. Термодинамическая теория ЭДС. Гальванический элемент. Электродвижущие силы и электродных потенциалы. Механизм возникновения электродного потенциала. Двойной электрический слой. Зависимость ЭДС гальванического элемента от активности потенциалопределяющих ионов и температуры. Электроды первого и второго рода. Амальгамные, окислительно-восстановительные, мембранные электроды, стеклянный и ионоселективный электроды. Гальванические цепи — химические и концентрационные. Электроды сравнения. Лабораторная работа: Определение ЭДС и электродных потенциалов. Расчёт произведения растворимости солей и гидроксидов	2	2	30	

Тема 9. Электролиз. Коррозия металлов. Законы электролиза. Особенности неравновесных процессов на электродах. Стадии электродных реакций: транспорт ионов, химическая, перенос заряда (разряд), образование новой фазы и связанные с ним явления поляризации электродов. Зависимость скорости электродных процессов от потенциала электроды в случае замедленных стадий диффузии и переноса заряда. Полярография. Коррозия.	2			30	
Итого в семестре (на курсе для ЗАО)	4	2	8	121	
Консультации и промежуточная аттестация (Экзамен)		2,5		6,5	
Всего контактная работа и СР по дисциплине		28,75		219,5	

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Курсовое проектирование учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства
ОПК-1	1. Имеет представление об основных законах и соотношениях физической химии, способах их применения для решения теоретических и прикладных задач, роли физической химии как теоретического фундамента современной химии и процессов химической технологии. 2. Прогнозирует влияние различных факторов на химическое равновесие, на фазовое равновесие, на равновесие в растворах электролитов, на потенциал электродов и ЭДС гальванических элементов, на направление и скорость химических реакций; составлять кинетические уравнения для кинетически простых реакций, классифицировать электроды и электрохимические цепи, пользоваться справочной литературой по физической химии. 3. Демонстрирует навыки проведения типовых физико-химических исследований и навыками решения типовых задач в области химической термодинамики, фазовых равновесий и фазовых переходов, электрохимии, химической кинетики.	собеседования Практико-
ОПК-2	1. Имеет представление о законах физической химии, закономерностях протекания и равновесия отдельных классов химических реакций и связь этих закономерностей с особенностями внутреннего строения молекул отдельных групп химических соединений. 2. Использует законы физической химии, термодинамические справочные данные и результаты физико-химического эксперимента для определения направления химических реакций, для вычисления равновесного выхода продуктов, определения тепловых эффектов реакций; определения констант скоростей химических реакций различных порядков и энергии активации и использовать полученные результаты для решения задач профессиональной деятельности. 3. Демонстрирует навыки анализа и расчета термодинамических параметров физико-химических процессов, методикой и техникой лабораторного эксперимента.	Вопросы устного собеседования Практико- ориентированные задания

5.1.2 Система и критерии оценивания

Шкала оценивания		ормированности компетенций
· - ¬	Устное собеседование	Письменная работа
5 (отлично)	Обучающийся показывает всестороннее и глубокое знание основных законов физической химии, свободно ориентируется в основных понятиях, терминах и определениях при ответе; усвоил основную и знаком с дополнительной литературой; может объяснить взаимосвязь основных физико-химических законов и их значение для последующей профессиональной деятельности; проявляет творческие способности и широкую эрудицию в использовании учебного материала.	Обучающийся демонстрирует правильное понимание условия задачи, владение навыками его анализа, выбора нужных законов и формул для ее решения, знание размерностей величин физической химии. Умеет применять математический аппарат для реализации плана решения задачи и, если это необходимо, может представить его графически. Получил правильный ответ и может его интерпретировать, выполняет все задания, предусмотренные формами контроля
4 (хорошо)	Обучающийся показывает достаточный уровень знаний основных законов физической химии, ориентируется в основных понятиях и определениях; усвоил основную литературу; допускает незначительные погрешности при ответах на вопросы экзаменационного билета и дополнительные вопросы преподавателя.	Обучающийся демонстрирует достаточное понимание условия задачи, владение навыками его анализа, выбора нужных законов и формул для ее решения, знание размерностей величин физической химии. Допускает незначительные погрешности при применении математического аппарата для реализации плана решения задачи Получил правильный ответ, но испытывает затруднения с его интерпретацией.
3 (удовлетворительно)	Обучающийся показывает знания учебного материала в минимальном объеме; может сформулировать законы физической химии, понятия и определения, но при этом, допуская большое количество непринципиальных ошибок; знаком с основной литературой; допускает существенные ошибки в ответе на экзамене, но может устранить их под руководством преподавателя.	Обучающийся вникает в смысл условия задачи, понимает план ее решения, однако, не может в полной мере с помощью математического аппарата реализовать ее решение. Знает размерности величин физической химии, может сделать рисунок или схему, поясняющую решение задачи.
2 (неудовлетворительно)	Обучающийся не имеет достаточного уровня знания дисциплины; не может сформулировать основные законы физической химии; плохо ориентируется в основных понятиях и определениях; плохо знаком с основной литературой; допускает при ответе на экзамене существенные ошибки и не может устранить их даже под руководством преподавателя. Попытка списывания, использования неразрешенных технических устройств или пользование подсказкой другого человека.	Обучающийся не может проанализировать условие задачи, наметить план ее решения, выбрать законы физической химии и плохо ориентируется в величинах физической химии, не владеет математическим аппаратом.
Зачтено	Обучающийся показывает всестороннее и глубокое знание основных физических законов, свободно ориентируется в основных понятиях, терминах и определениях; усвоил основную и знаком с дополнительной литературой; может объяснить взаимосвязь основных физических законов и их значение для последующей профессиональной деятельности; проявляет творческие способности в использовании учебного материала.	

|--|

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов
	Курс 3
1	Что такое физическая химия, что изучает физическая химия? Значение физической химии. Вещество и его свойства.
2	Что такое химическая термодинамика и что она изучает? Что такое термодинамическая система? Какие бывают термодинамические системы?
3	Работа, теплота, фаза, термодинамический процесс, виды термодинамических процессов? Условия проведения процессов? Что такое параметры состояния?
4	Термодинамический цикл? Уравнение состояния системы. Что такое внутренняя энергия системы? Какие бывают формы передачи энергии?
5	Термодинамическое равновесие. Метастабильное равновесие. Признаки термодинамического равновесия.
6	Первое начало (закон) термодинамики. Формулировки и математическое выражение первого начала термодинамики.
7	Теплоемкость при постоянстве различных параметров и способы ее расчета.
8	Приложение первого начала (закона) термодинамики к процессам идеального газа при постоянстве одного из параметров.
9	Приложение первого начала (закона) термодинамики к процессам нагревания (охлаждения) в реальных системах.
10	Приложение первого начала (закона) термодинамики к процессам изменения агрегатного состояния вещества.
11	Приложение первого начала (закона) термодинамики к химическим реакциям. Закон Гесса и следствие из него. Использование закона Гесса применительно к расчету тепловых эффектов.
12	Энтальпия. Расчет теплового эффекта при стандартных условиях.
13	Расчет теплового эффекта и энтропии реакции при любой температуре. Закон Кирхгофа.
14	Последовательность вычисления теплового эффекта реакции при любой температуре.
15	Экспериментальное определение тепловых эффектов.
16	Второе начало термодинамики. Формулировка. Его математическое выражение.
17	Вечный двигатель второго рода. Схема работы реальной тепловой машины.
18	Идеальная машина Карно (цикл Карно) и ее КПД. Теорема Карно.
19	Второе начало термодинамики. Самопроизвольные процессы. Энтропия и ее свойства. Приведенное тепло.
20	Расчет энтропии для реальных процессов. Расчет энтропии изобарного нагревания (охлаждения) вещества.
21	Расчет энтропии для реальных процессов. Расчет энтропии фазовых превращений и изменения агрегатного состояния.
22	Расчет энтропии для реальных процессов. Химические реакции. Постулат Планка. Третий закон термодинамики.
23	Термодинамические признаки самопроизвольности протекания процессов и равновесия в системах при постоянстве отдельных параметров. Энергия Гиббса. Энергия Гельмгольца.
24	Химический потенциал. Вычисление химического потенциала.
25	Равновесные соотношения при фазовых переходах. Уравнение Клаузиуса-Клапейрона. Способы решения уравнения Клаузиуса-Клапейрона.
26	Сродство химической реакции и его расчет.
27	Константа равновесия и ее связь изменением энергии Гиббса. Уравнение изотермы Вант-Гоффа.
28	Константа равновесия и ее зависимость от температуры. Уравнение изобары Вант-Гоффа. Закон Лапласа.

29	Последовательность расчета химического сродства (изменения энергии Гиббса) реакции.
30	Химическое равновесие. Константа равновесия для газов, растворов.
31	Порядок расчета теоретического выхода продуктов обратимых реакций, исходя из численных значений констант равновесия.
32	Связь между Кр, Кс, Ка, Кп . Определение констант равновесия для гомогенных и гетерогенных реакций.
33	Условия равновесия в гетерогенных системах. Уравнение Клаузиуса-Клапейрона для процессов испарения и сублимации.
34	Разбавленные растворы. Температура кристаллизации разбавленных растворов. Диаграмма состояния однокомпонентных систем.
35	Химическая кинетика. Скорость гомогенной химической реакции и ее зависимость от различных факторов? Константа скорости реакции. Уравнение Аррениуса. Способы регулирования скорости гомогенной реакции.
36	Скорость гетерогенной химической реакции. Законы Фика. Способы регулирования скорости гетерогенной реакции.
37	Давление пара над раствором. Относительное понижение давления насыщенного пара в зависимости от концентрации растворенного вещества.
38	Определение молекулярного веса растворенного вещества. Криоскопия. Эбуллиоскопия.
39	Закон Рауля, его практическое применение.
40	Закон Генри, его практическое применение.
41	Зависимость температуры кипения и температуры замерзания растворов от концентрации.
42	Термодинамическая классификация растворов. Использование модели регулярных растворов.
43	Химический потенциал компонента раствора для идеального и реального раствора.
44	Активность компонентов растворов (расплавов), расчеты коэффициентов активности.
45	Активность компонентов растворов (расплавов), расчеты коэффициентов активности.
46	Основные понятия и определения (термодинамическая система, гомогенная и гетерогенная системы, фаза, компонент, число степеней свободы, вещество, раствор). Правило фаз Гиббса.
47	Однокомпонентные системы и их использование.
48	Двухкомпонентные неконденсированные системы и их использование.
49	Двухкомпонентные конденсированные системы и их использование.
50	Построение диаграмм состояния двухкомпонентных конденсированных систем по данным термографического анализа.
51	Трехкомпонентные системы и их использование.
52	Водно-солевые системы и их особенности.
53	Электрохимия электрохимические процессы. Особенности электрохимических процессов.
54	Проводники первого и второго рода.
55	Электролиты. Растворы электролитов. Диссоциация и сольватация.
56	Особенности диссоциации сильных и слабых электролитов. Константа диссоциации.
57	Закон разбавления Оствальда. Термические эффекты в растворах электролитов.
58	Химическое равновесие при диссоциации воды. рН раствора. Ионное произведение воды.
59	Активность. Коэффициент активности. Зависимость коэффициента активности от концентрации.
60	Ионная сила раствора. Уравнение Дебая-Хюккеля.
61	Равновесие при гидролизе солей.
62	Равновесие в буферных растворах. Буферная емкость. Значение буферных растворов.
63	Равновесие в насыщенных растворах. Произведение растворимости.
64	Прохождение тока через растворы. Схема движения ионов и электронов при электролизе.
65	Равновесие буферных растворов и насыщенных растворов.
66	Неравновесные явления в растворах электролитов при прохождение тока через раствор.
67	Эстафетный механизм передачи ионов протонов в воде.
68	Числа переноса. Относительные скорости движения ионов.
69	Электропроводность электролита. Зависимость электропроводности от различных факторов.
70	Измерение экспериментальных методов электропроводности.
71	Удельная электропроводность.
72	Эквивалентная электропроводность.
73	Зависимость эквивалентной электрической проводимости от концентрации для сильных и слабых электролитов.
	місктролитов.
74	Измерение эпектропроволности и ее прикладное значение
74	Измерение электропроводности и ее прикладное значение.

76	Электрод. Электрохимическая цепь. Электрохимическая реакция.
77	Строение двойного электрического слоя. Возникновение электрохимического потенциала.
78	Гальванический элемент. Схема и принцип работы гальванического элемента.
79	Полуэлемент. Электрод сравнения.
80	Зависимость электродного потенциала от активности соответствующих ионов в растворе. Уравнение Нернста. Стандартный электродный потенциал. Система знаков для стандартных потенциалов.
81	Термодинамика обратимых электрохимических систем.
82	Электроды 1-ого и 2-ого рода, газовые электроды.
83	Водородный электрод и его использование.
84	Окислительно-восстановительные, ионообменные электроды.
85	Химические цепи первого и второго рода, их практическое значение.
86	Топливный элемент. Схема и принцип его работы.
87	Аккумуляторы. Схема и принцип их работы.
88	Концентрационные цепи.
89	Потенциометрия и ее практическое применение. Неравновесные электродные процессы.
90	Количественные показатели электролиза. Законы Фарадея.
91	Электрохимическая коррозия металлов.
92	Электрокинетические методы защиты металлов от коррозии.
93	Расчетные формулы в электрохимических процессах.

5.2.2 Типовые тестовые задания

Не предусмотрено

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

- 1. Стандартные энтальпии сгорания графита и алмаза в кислороде соответственно равны: -94,05 и 94,5 ккал/моль. Чему равна теплота превращения графита в алмаз?
- 2. При 200 град. Цельсия для реакции BaSO4 + CO32- = BaCO3 +SO42- барит витерит нормальное химическое сродство равно -1400 кал. Чему равна константа равновесия реакции?
- 3. Скрытая теплота испарения воды равна 9,7 ккал/моль. Вода кипит при температуре 120 град. Цельсия под давлением...

5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)

5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение промежуточной аттестации регламентировано локальным нормативным актом СПбГУПТД «Положение о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся»

5.3.2 Форма проведения промежуточной аттестации по дисциплине

Устная + Письменная + Компьютерное тестирование	Иная
---	------

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

Возможность пользоваться справочными таблицами, калькулятором;

Время на подготовку ответа по билету 45 минут.

В течение семестра выполняется контрольная работа

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка			
6.1.1 Основная учебная литература							
Еремин В. В. (и др.)	Основы физической химии (Электронный ресурс) : учебник : в 2 ч. Ч. 1 : Теория. — 5-е издание, перераб. и доп. (эл.). — (Учебник для высшей школы)	Москва: Лаборатория знаний	2019	https://ibooks.ru/rea ding.php? short=1&productid= 373279			

Еремин В. В. (и др.)	Основы физической химии (Электронный ресурс) : учебник : в 2 ч. Ч. 2 : Теория. — 5-е издание, перераб. и доп. (эл.). — (Учебник для высшей школы)	Москва: Лаборатория знаний	2019	https://ibooks.ru/rea ding.php? short=1&productid= 373280
	я учебная литература			
В.А. Липин, А.И. Смирнова, Т.А. Суставова	Физическая химия. Электрохимия: учеб. пособие	М-во науки и высшего образования РФ, СПетерб. гос. ун-т пром. технологий и дизайна, Высш. шк. технологии и энергетики Санкт-Петербург: ВШТЭ СПбГУПТД	2020	http://nizrp.narod.ru/ metod/kaffizikollche m/1598558238.pdf
В.А. Липин [и др.]	Химическая термодинамика [Текст]: учебное пособие	М-во образования и науки РФ, ВШТЭ СПбГУПТД. – СПб.: ВШТЭ СПбГУПТД	2017	http://nizrp.narod.ru/ metod/kaffizikollche m/Khimicheskaya_te rmodinamika.pdf
А.Б. Липин, В.А. Липин	Фазовые диаграммы [Текст]: учебное пособие	М-во образования и науки РФ, СПбГТУРП. – СПб.: СПбГТУРП	2015	http://nizrp.narod.ru/ metod/kaffizikollche m/7.pdf
Липин, В. А., Липин, А. Б.	Примеры и задачи по химической термодинамике	Санкт-Петербург: Университет ИТМО	2015	http://www.iprbooksh op.ru/67584.html
А.И. Смирнова, Т.А. Суставова, В.А. Липин	Физическая химия [Текст] Ч.1 : учеб. пособие	М-во науки и высшего образования РФ, ВШТЭ СПбГУПТД СПб. : ВШТЭ СПбГУПТД	2019	http://nizrp.narod.ru/ metod/kaffizikollche m/1575930938.pdf
В.А. Липин [и др.]	Задачи по химической термодинамике [Текст]: учебно-практическое пособие	М-во образования и науки РФ, ВШТЭ СПбГУПТД. – СПб.: ВШТЭ СПбГУПТД	2017	http://nizrp.narod.ru/ metod/kaffizikollche m/Zadachi_po_Khim _t-d.pdf

6.2 Перечень профессиональных баз данных и информационно-справочных систем

Электронно-библиотечная система IPRbooks [Электронный ресурс]. URL: http://www.iprbookshop.ru/ Электронная библиотека ВШТЭ СПБ ГУПТД [Электронный ресурс]. URL: http://nizrp.narod.ru Электронно-библиотечная система «Айбукс» [Электронный ресурс]. URL: https://www.ibooks.ru/

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

MicrosoftWindows 8
MicrosoftOfficeProfessional 2013

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение
Б-229	Электрическая мешалка, вытяжной шкаф, аналитические весы, криостат, нагревательные плитки, калориметры, кондуктометр, установка для измерения электропроводности, электролизер. магнитные мешалки, колбонагреватели, рефрактометр, поляриметр
Лекционная аудитория	Мультимедийное оборудование, специализированная мебель, доска