Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖДАЮ Директор ВШТЭ

Рабочая программа дисциплины

Б1.О.15 Электротехника и промышленная электроника

Учебный план: ФГОС3++b180301.19-1_21-14.plx

Кафедра: 30 Автоматизированного электропривода и электротехники

Направление подготовки:

(специальность) 18.03.01 Химическая технология

Профиль подготовки: Химическая и биотехнология переработки растительного сырья

(специализация)

Уровень образования: бакалавриат

Форма обучения: очная

План учебного процесса

Семестр		Контактная работа обучающихся		Сам.	Контроль,	Трудоё	Форма	
(курс для			работа	час.	мкость, ЗЕТ	промежуточной аттестации		
2	УΠ	34	34	39,75	0,25	3	2000	
3	РПД	34	34	39,75	0,25	3	Зачет	
Итого	УΠ	34	34	39,75	0,25	3		
111010	РПД	34	34	39,75	0,25	3		

Составитель (и)):		
Кандидат техни	ческих наук, до	цент	Иваненко В.П.
От кафедры соо Заведующий электропривода	кафедрой	автоматизированного ики	Благодарный Н.С.
От выпускающе Заведующий ка			Смирнова Е.Г.

Смирнова В.Г.

приказом Министерства образования и науки Российской Федерации от 07.08.2020 г. № 922

Методический отдел:

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 18.03.01 Химическая технология, утверждённым

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Сформировать компетенции обучающегося в области электротехники и электроники для успешного изучения ими последующих профессиональных дисциплин, связанных с химической и биотехнологией переработки растительного сырья.

1.2 Задачи дисциплины:

- Рассмотреть основные методы анализа и расчета электрических и магнитных цепей, базовые элементы и схемы промышленной электроники.
- Раскрыть принципы работы трансформаторов, электрических машин, особенности их рабочих и пусковых характеристик, а также принцип работы и характеристики типовых электронных схем
- Продемонстрировать особенности работы электрических двигателей для правильной эксплуатации электротехнических и электронных устройств, связанных с химической и биотехнологией переработки растительного сырья.

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Учебная практика, ознакомительная практика

Физика

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-4: Способен обеспечивать проведение технологического процесса, использовать технические средства для контроля параметров технологического процесса, свойств сырья и готовой продукции, осуществлять изменение параметров технологического процесса при изменении свойств сырья

Знать: Основные законы электротехники и электроники и методику их применения при освоении новой техники.

Уметь: Профессионально осваивать и эксплуатировать новое оборудование, налаживать его эффективную и безаварийную работу.

Владеть: Навыками использования основных законов электротехники и электроники для грамотной эксплуатации оборудования.

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Семестр (курс для 3AO)	Контактн работа	ая			
Наименование и содержание разделов, тем и учебных занятий		лек. (часы)	Лаб. (часы)	СР (часы)	Инновац. формы занятий	Форма текущего контроля
Раздел 1. Электрические цепи постоянного тока						
Тема 1. Электрическая цепь. Основные понятия. Элементы электрической цепи. Электрические схемы и схемы замещения. Топологические термины и условные графические обозначения. ЭДС, ток, напряжение, энергия, мощность. Пассивные и активные элементы: резисторы, конденсаторы, индуктивности, источники ЭДС и тока. Параметры и В-А характеристики. Режимы работы электрических цепей.		2		2		
Тема 2. Анализ электрических цепей. Законы Ома и Кирхгофа. Баланс мощностей. Эквивалентные преобразования электрических цепей. Расчет цепей по законам Ома и Кирхгофа. Метод контурных токов. Метод узловых потенциалов. Метод наложения (суперпозиции). Метод эквивалентного источника.	3	3	2	2	гд	С,Л
Лабораторная работа №1: Исследование линейных цепей постоянного тока с одним источником энергии.						
Тема 3. Нелинейные цепи постоянного тока. Нелинейные элементы и их характеристики. Методы расчета электрических цепей с нелинейными элементами (графический и аналитический метод).		1		1		
Раздел 2. Электрические цепи переменного тока.						С,Л

	1				
Тема 4. Основные понятия и законы. Синусоидальные ЭДС, токи и напряжения- основные понятия и определения. Действующее значение синусоидальных ЭДС, тока и напряжения. Получение синусоидальной ЭДС.Изображение синусоидальных величин комплексными числами и векторами в комплексной плоскости. Основные элементы и параметры электрических цепей. Временные и векторные диаграммы. Закон Ома. Законы Кирхгофа. Мощность цепи синусоидального тока.		4		3	
Тема 5. Последовательное соединение резистора, катушки и конденсатора. Треугольники напряжений, сопротивлений и мощностей. Резонанс напряжений. Векторные диаграммы и частотные характеристики. Лабораторная работа №2:Исследование неразветвленной цепи синусоидального тока с активным и реактивным сопротивлениями. Лабораторная работа №3: Исследование цепи однофазного переменного тока с последовательным соединением активного, индуктивного и емкостного сопротивлений. Резонанс напряжений.		2	6	2	
Тема 6. Параллельное соединение резистора, катушки и конденсатора. Резонанс токов. Векторные диаграммы и частотные характеристики. Лабораторная работа №4:Исследование цепи переменного тока с параллельным соединением индуктивной катушки и конденсатора. Резонанс токов.		2	3	3	
Тема 7. Электрические трёхфазные цепи. Получение трёхфазной системы ЭДС. Соединение нагрузки звездой с нейтральным проводом. Соединение нагрузки звездой без нейтральным проводом. Симметричный и несимметричный режимы. Фазные и линейные напряжения и токи. Векторные диаграммы. Лабораторная работа №5: Исследование трехфазной цепи при соединении приемников звездой.		2	3	3	

Тема 8. Соединение нагрузки трёхфазной цепи треугольником. Симметричный и несимметричный режим. Фазные и линейные напряжения и токи. Векторные диаграммы. Мощность трёхфазной цепи. Лабораторная работа №6: Исследование трехфазной электрические цепи при соединении приёмников треугольником.	2	3	3	
Раздел 3. Магнитные цепи.				
Тема 9. Основные понятия и законы. Характеристики магнитного поля. Магнитный поток. Магнитодвижущая сила. Закон полного тока. Магнитное напряжение. Магнитное сопротивление. Классификация магнитных цепей. Ферромагнитные материалы.	1		1	С
Тема 10. Мощность потерь в магнитопроводе. Потери от гистерезиса. Потери от вихревых токов. Векторная диаграмма и схема замещения.	1		1	
Раздел 4. Электрические машины				
Тема 11. Трансформаторы. Устройство и принцип действия однофазного трансформатора при нагрузке. Уравнения трансформатора, схема замещения. Свойство саморегулирования тока первичной обмотки. Внешняя характеристика трансформатора. Опыты холостого хода и короткого замыкания. Уравнения, схемы замещения, векторные диаграммы. Особенности трехфазных трансформаторов. Лабораторная работа №7: Исследование однофазного трансформатора.	2	2	3	Л,С

Тема 12. Трехфазные асинхронные двигатели. Устройство и принцип действия. Скольжение. Свойство саморегулирования электромагнитного вращающего момента. ЭДС и токи статора и ротора. Механические характеристики. Рабочие характеристики. Пуск в ход асинхронного двигателя. Регулирование частоты вращения ротора. Потери мощности и КПД. Лабораторная работа №8: Исследование трехфазного асинхронного двигателя с короткозамкнутым ротором.		2	3	3		
Тема 13. Электрические машины постоянного тока. Принцип действия генератора постоянного тока. Способы возбуждения. Характеристики генератора. Устройство и принцип действия двигателя постоянного тока с независимым возбуждением. Пуск двигателя в ход. Частота вращения якоря и способы ее регулирования. Механические и рабочие характеристики. Потери мощности и КПД. Особенности двигателей с параллельным и последовательным возбуждением. Лабораторная работа №9: Исследование генератора постоянного тока с независимым возбуждением. Лабораторная работа №10: Исследование двигателя постоянного ток с независимым возбуждением.		2	6	3		
Тема 14. Синхронные машины. Области применения. Устройство и принцип действия синхронного трехфазного двигателя. Пуск в ход двигателя. Основные характеристики.		2		3,75		
Раздел 5. Элементы электроники						
Тема 15. Полупроводниковые приборы. Электропроводность полупроводниковые Свойства р-п перехода. Полупроводниковые диоды. Характеристики и параметры. Биполярны транзисторы. Полевые транзисторы. Устройство, основные характеристики и параметры. Тиристоры. Оптоэлектронные приборы. Интегральные микросхемы. Лабораторная работа №11: Исследование полупроводникового диода, стабилитрона и тиристора.		2	2	2		Л
	•				•	•

Тема 16. Усилители – базовые элементы электронных схем. Классификация, основные параметры и характеристики усилителей. Обратная связь в усилителях. Усилители на биполярных и полевых транзисторах. Операционные усилители и линейные схемы на их основе. Лабораторная работа №12: Исследование усилителя низкой частоты на биполярных транзисторах с общим эмиттером	2	2	2	
Тема 17. Источник вторичного электропитания электронных устройств. Структура источника питания. Однофазные и трехфазные выпрямители. Сглаживающие фильтры. Внешние характеристики выпрямителей. Управляемые выпрямители. Лабораторная работа №13: Исследование выпрямителей однофазного переменного тока.	2	2	2	
Итого в семестре (на курсе для ЗАО)	34	34	39,75	_
Консультации и промежуточная аттестация (Зачет)	0,2	25		
Всего контактная работа и СР по дисциплине	68,	,25	39,75	

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Курсовое проектирование учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства	
ОПК-4	2. Показывает способность исследовать, эксплуатировать и	1. Тестовые задания.	

5.1.2 Система и критерии оценивания

Шково ополивония	Критерии оценивания сф	ормированности компетенций		
Шкала оценивания	Устное собеседование	Письменная работа		
Зачтено	Обучающийся знает основные законы и свойства электрических и магнитных цепей постоянного (переменного) тока и может их применять при ответе на соответствующие вопросы; демонстрирует знания необходимых формул при расчете цепей; понимает значение терминов, характеризующих параметры цепей; может нарисовать и пояснить векторные диаграммы для цепей переменного тока и необходимые	Тестовое задание выполнено на 75 %		

	графические зависимости; показывает умение использовать базовые знания в области электротехники для последующей профессиональной деятельности.	
Не зачтено	Обучающийся не знает основных терминов и законов для цепей постоянного (переменного) тока; не знает основных формул для расчета цепей и определения их параметров; не может построить векторные диаграммы для простейших цепей переменного тока; не знает основных методов расчета электрических цепей; допускает при ответе на зачете существенные ошибки и не может устранить их даже под руководством преподавателя	Тестовое задание выполнено менее 75%

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности

5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов
	Семестр 3
1	Схемы замещения источника ЭДС и источника тока
2	Топологические элементы цепи.
3	Баланс мощностей в цепи постоянного тока.
4	Закон Ома для участка цепи с ЭДС.
5	Законы Кирхгофа для цепи постоянного тока.
6	Расчет электрических цепей по законам Кирхгофа.
7	Расчет цепей методом контурных токов.
8	Расчет нелинейных электрических цепей.
9	Синусоидальные напряжения и токи – основные понятия, действующее значение.
10	Особенности электромагнитных процессов в цепи синусоидального тока, идеализированные элементы цепи.
11	Представление синусоидальных величин комплексными числами и векторами в комплексной плоскости
12	Синусоидальный ток в активном сопротивлении, закон Ома для действующих значений напряжений, токов и в комплексной форме, векторная диаграмма.
13	Синусоидальный ток в индуктивности, закон Ома для действующих значений напряжений, токов и в комплексной форме, векторная диаграмма.
14	Синусоидальный ток в емкости, закон Ома для действующих значений напряжений, токов и в комплексной форме, векторная диаграмма
15	Законы Кирхгофа для цепи синусоидального тока.
16	Мощности в цепи синусоидального тока.
17	Законы Ома и Кирхгофа в комплексной форме для последовательного соединения резистивного и индуктивного элементов, треугольник сопротивлений, векторная диаграмма.
18	Законы Ома и Кирхгофа в комплексной форме для последовательного соединения резистивного и емкостного элементов, треугольник сопротивлений, векторная диаграмма.
19	Законы Ома и Кирхгофа в комплексной форме для последовательного соединения резистивного, индуктивного и емкостного элементов, треугольник сопротивлений, векторная диаграмма.
20	Резонанс напряжений, условие резонанса, графические зависимости, векторная диаграмма.
21	Законы Ома и Кирхгофа в комплексной форме для параллельного соединения резистивного, индуктивного и емкостного элементов, треугольник проводимостей, векторные диаграммы
22	Резонанс токов, условие резонанса, графические зависимости, векторная диаграмма.
23	Симметричные трехфазные цепи, соединенные звездой, расчетные соотношения, векторная диаграмма
24	Симметричные трехфазные цепи, соединенные треугольником, расчетные соотношения, векторная диаграмма.
25	Несимметричные трехфазные цепи, соединенные звездой, роль нейтрального провода, расчетные соотношения, векторные диаграммы.

26	Несимметричные трехфазные цепи, соединенные треугольником, расчетные соотношения, векторные диаграммы
27	Основные характеристики магнитного поля.
28	Магнитные цепи постоянного потока.
29	Устройство однофазного трансформатора, назначение ферромагнитного магнитопровода, типы магнитопровода.
30	Магнитные потери в ферромагнитном магнитопроводе.
31	Принцип действия трансформатора в режиме холостого хода, схема замещения, векторная диаграмма.
32	Режим трансформатора при нагрузке, уравнения для обмоток трансформатора, схема замещения приведенного трансформатора, векторная диаграмма
33	Уравнение МДС трансформатора, свойство саморегулирования
34	Внешняя характеристика трансформатора.
35	Опыт холостого хода трансформатора, расчет параметров, схема замещения, векторная диаграмма.
36	Опыт короткого замыкания трансформатора, расчет параметров, схема замещения, векторная диаграмма.
37	Особенности трехфазных трансформаторов.
38	Потери мощности и КПД трансформатора
39	Устройство и принцип действия трехфазного асинхронного двигателя.
40	Электромагнитный вращающий момент асинхронного двигателя, свойство саморегулирования, скольжение.
41	ЭДС и токи статора и ротора асинхронного двигателя.
42	Механические характеристики асинхронного двигателя.
43	Рабочие характеристики асинхронного двигателя.
44	Потери мощности и КПД асинхронного двигателя.
45	Устройство и принцип действия генератора постоянного тока с независимым возбуждение
46	Характеристики генератора постоянного тока с независимым возбуждением.
47	Устройство и принцип действия двигателя постоянного тока с независимым возбуждением, способы возбуждения машины.
48	Свойство саморегулирования электромагнитного момента в двигателях постоянного тока.
49	Частота вращения якоря двигателя постоянного тока и способы ее регулирования.
50	Механические и регулировочные характеристики двигателя постоянного тока.
51	Рабочие характеристики двигателя постоянного тока.
52	Особенности двигателей постоянного тока с последовательным, параллельным и смешанным возбуждением.
53	Устройство и принцип действия трехфазного синхронного двигателя, пуск двигателя, свойство саморегулирования, угловая характеристика.
54	Выпрямительные свойства р-п перехода.
55	Полупроводниковые диоды: основные типы, характеристики и параметры.
56	Биполярные транзисторы: типы, схемы включения, принцип работы транзистора с общим эмиттером.
57	Тиристоры: устройство, основные физические процессы, характеристики.
58	Классификация, основные характеристики и параметры усилителей.
59	Обратная связь в усилителях: виды связи, влияние отрицательной обратной связи на характеристики и параметры усилителя.
60	Усилитель на биполярном транзисторе: назначение элементов, режим по постоянному току, принцип усиления сигнала.
61	Операционный усилитель: краткое описание и параметры, передаточная характеристика.
62	Однополупериодные и двухполупериодные выпрямители.
63	Сглаживающие фильтры.

5.2.2 Типовые тестовые задания

Вариант №1

- 1. Определить сопротивление ламп накаливания при указанных на них мощностях P1=100 Bt, P2 = 150 Bt и напряжении U = 220 B.
- 1). R1 =484 Om; R2 =124 Om. 2). R1 =684 Om; R2 =324 Om. 3). R1 =484 Om; R2 =324 Om.
- 2. Чему равен угол сдвига фаз между напряжением и током в емкостном элементе?
- 1). 0. 2). 90° 3). -90°.
- 3. Чему равен ток в нулевом проводе в симметричной трехфазной цепи при соединении нагрузки в звезду?
- 1). Номинальному току одной фазы. 2). Нулю. 3). Сумме номинальных токов двух фаз.
- 4. Симметричная нагрузка соединена треугольником. При измерении фазного тока амперметр

показал 10 А. Чему будет равен ток в линейном проводе?

- 1).10 A. 2). 17,3 A. 3).14,14 A. 4). 20 A.
- 5. Какие трансформаторы используются для питания электроэнергией бытовых потребителей?
- 6. Частота вращения магнитного поля асинхронного двигателя n1 = 1000об/мин. Частота вращения ротора n2=950об/мин. Определить скольжение.
- 7. Какое сопротивление должны иметь: а) амперметр; б) вольтметр
- 8. Опасен ли для человека источник электрической энергии, напряжением 36 В? Вариант № 2
- 1. Эквивалентное сопротивление цепи с последовательным соединением резисторов R1=15 Ом, R2=10 Ом, R3=12 Ом, R4=6 Ом.
- 1) 10; 2) 43; 3) 11.
- 2. В цепи с последовательно соединёнными резистором R и емкостью C определить реактивное сопротивление Xc, если вольтметр показывает входное напряжение U=200 B, ваттметр P=640 Bt, амперметр I=4 A.
- 1). 20 Om. 2). 50 Om. 3). 40 Om. 4). 30 Om.
- 3. Почему обрыв нейтрального провода четырёхпроводной трёхфазной системы является аварийным режимом?
- 1). На всех фазах приемника энергии напряжение падает.
- 2). На одних фазах приёмника энергии напряжение увеличивается, на других уменьшается. 3). На всех фазах приёмника энергии напряжение возрастает.
- 4. Соотношения, связывающие фазные и линейные токи в трехфазной электрической цепи при соединении звездой.
- 1). U π =U φ , I π =I φ 2). U π =√3U φ , I π =√3U φ , I π =10 4). U π =U φ , I π =√3I φ
- 5. Для преобразования какой энергии предназначены асинхронные двигатели?
- 6. При постоянном напряжении питания двигателя постоянного тока параллельного возбуждения магнитный поток возбуждения уменьшился. Как изменилась частота вращения?
- 7. Какие виды погрешностей присущи электроизмерительным приборам?
- 8. Какие части электротехнических устройств заземляются? Вариант №3
- I. 1. Эквивалентное сопротивление цепи с параллельным соединением резисторов R1=15 Ом, R2=10 Ом, R3=12 Ом, R4=6 Ом.
- 1) 10; 2) 43; 3) 11;
- 2. Мгновенное значение тока в нагрузке задано следующим выражением $i = 0.06 \sin{(942t 45^\circ)}$. Определить период сигнала и частоту.
- 1). f =200 Гц; T =5·10-3 c
- 2). f =150 Гц; T =6,67·10-3 c
- 3). f =300 Гц; T =3,33·10-3 c
- 3. В каких единицах выражается индуктивность L?
- 1). Генри. 2). Фарада 3). Кельвин. 4). Вольт.
- 4. Лампы накаливания с номинальным напряжением 220 В включают в трёхфазную сеть с линейным напряжением 220 В. Определить схему соединения ламп.
- 1). Трехпроводной звездой. 2). Четырехпроводной звездой. 3). Треугольником.
- 5. У силового однофазного трансформатора номинальное напряжение на входе U1 = 6000 B, на выходе: U2 =100 B. Определить коэффициент трансформации трансформатора.
- 6. Как называется основная характеристика асинхронного двигателя?
- 7. Назвать классы точности электроизмерительных приборов.
- 8. Сработает ли защита из плавких предохранителей при пробое на корпус двигателя: а) в трехпроводной; б)четырехпроводной сетях трехфазного тока?
 Вариант № 4
- 1. Определить потери мощности в источнике, если его внутреннее сопротивление R0=2 Ом, сопротивление нагрузки R=40 Ом, ток в цепи I=12 А
- 1). 6048 BT; 2). 288 BT; 3). 5760 BT;
- 2. Напряжение на зажимах цепи с активным элементом, сопротивлением R = 50 Ом, изменяется по закону u= 100 sin (314t+30°). Определить закон изменения тока в цепи.
- 1). i =2sin 314t; 2). i =2 sin(314t+30°); 3). i =1,4sin(314t+30°);4). i =1,4sin 314t.
- 3. В трехфазной цепи линейное напряжение равно 220 В, линейный ток 2 А, активная мощность 380 Вт. Найти коэффициент мощности.
- 1). 0, 8. 2). 0, 6. 3).

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

Не предусмотрено.

- 5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)
- 5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение промежуточной аттестации регламентировано локальным нормативным актом СПбГУПТД «Положение о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся»

	_			U				
532	Форма	проведения п	DOMERV	TOUHOU	ATTECTALI	ии по	писп	иппине
U.U.Z	TOPING I	проводении	PONICKY		иттостиц	7171 11 0	диоц	**************************************

Устная	×	Письменная	×	Компьютерное тестирование		Иная	
--------	---	------------	---	---------------------------	--	------	--

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

Возможность пользоваться справочными таблицами по электротехнике; Время на подготовку ответа- 45 минут.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка		
6.1.1 Основная учебн	ая литература					
Гордеев-Бургвиц, М. А.	Общая электротехника и электроника	Москва: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ	2015	http://www.iprbooksh op.ru/35441.html		
6.1.2 Дополнительная учебная литература						
В.К. Пономаренко	Электротехника [Текст]. Ч. І.: учебное пособие	М-во образования и науки РФ, СПбГТУРП. – СПб.: СПбГТУРП	2010	http://nizrp.narod.ru/p onomorenko.pdf		
В.К. Пономаренко [и др.]	Электротехника [Текст]. Ч.І.: лабораторный практикум	М-во образования и науки РФ, СПбГТУРП. – СПб.: СПбГТУРП	2012	http://nizrp.narod.ru/l abpraktelektr.pdf		

6.2 Перечень профессиональных баз данных и информационно-справочных систем

Электронно-библиотечная система IPRbooks [Электронный ресурс]. URL: http://www.iprbookshop.ru/ Электронная библиотека ВШТЭ СПБ ГУПТД [Электронный ресурс]. URL: http://nizrp.narod.ru

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

MicrosoftWindows 8

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение				
A-101a	Лабораторный стенд по исследованию электрических цепей постоянного и переменного тока. Лабораторные стенды по исследованию: трансформаторов, трехфазного, конденсаторного и однофазного асинхронного двигателя, машин постоянного тока				
Лекционная аудитория Мультимедийное оборудование, специализированная мебель, доска					
A-101	Лабораторные стенды по исследованию электрических цепей постоянного и переменного тока. Лабораторные стенды по исследованию трансформаторов и машин переменного и постоянного тока. Лабораторный стенд испытания двигателя и генератора постоянного тока				