Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» ВЫСШАЯ ШКОЛА ТЕХНОЛОГИИ И ЭНЕРГЕТИКИ

УТВЕРЖДАЮ Директор ВШТЭ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.03.02		Дополнительные главы химии природных соединений
(индекс дисциплины)		(Наименование дисциплины)
Кафедра:	12	Органической химии
	Код	(Наименование кафедры)
Направление по,	дготовки:	18.04.01 Химическая технология
Профиль подготовки:		Химия и технология продуктов тонкого органического синтеза
Уровень образования:		магистратура

План учебного процесса

Составляющие уче	Очное обучение	Очно-заочное обучение	Заочное обучение	
	Всего	108		
Контактная работа	Аудиторные занятия	54		
обучающихся с преподавателем	Лекции	18		
по видам учебных занятий и самостоятельная работа	Лабораторные занятия	36		
обучающихся	Практические занятия			
(часы)	Самостоятельная работа	54		
	Промежуточная аттестация			
	Экзамен			
Формы контроля по семестрам	Зачет	1		
(номер семестра)	Контрольная работа			
	Курсовой проект (работа)			
Общая трудоемкость дисципли	3			

Форма обучения:		Pac	спределе	ние зачет	ных един	иц трудо	емкости п	о семест	рам	
, ,	1	2	3	4	5	6	7	8	9	10
Очная	3									
Очно-заочная										
Заочная										

Рабочая программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению 180401 Химическая технология

и на основании учебного плана № __m180401.12-12_20

Кафедра-разработчик:	Органической химии
Заведующий кафедрой:	Тришин Ю.Г.
СОГЛАСОВАНИЕ:	
Выпускающая кафедра:	Органической химии
Заведующий кафедрой:	Тришин Ю.Г.
Методический отдел:	Смирнова В.Г.

•	І. ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИ	ИПЛИНЫ
1.1. Место препо	даваемой дисциплины в структуре образовательной г	трограммы
Блок 1: Вар	Базовая Обязательная Дополнительно является факультативом [мативная X По выбору X	
1.2. Цель дисциі	тлины вать компетенции обучающегося в области химическ	OĂ TOVUOROFIAIA ROORVIITOR
тонкого орга	нического синтеза на основе природных источников органи	
	вать прочные знания о важнейших классах природных	соединений, методах их
• Раскрыть о	я и синтеза; сновные закономерности свойств природных соединений р гь принципиальные технологические схемы получени	
природных	го принципиальные технологические ехемы получени соединений; гь главные области применения природных соединений	•
переработн	ΣU;	
	трировать преимущества использования природ вемого сырья по сравнению с нефтехимическими полу анического синтеза.	
	панируемых результатов обучения по дисциплине, соо результатами освоения образовательной программы	тнесенных с
Код		O-0- #00
компетенции	Формулировка компетенции	Этап формирования
ОПК-3	способность к профессиональной эксплуатации современного оборудования и приборов в соответствии с направлением и профилем подготовки	1
Планируемые р Знать:	результаты обучения	
	ие классы природных соединений, основные закономер пичных видов,	оности свойств природных
2) методы	извлечения и синтеза природных соединений, иальные технологические схемы получения продукто	в на основе природных
соединений, гла Уметь:	вные области применения природных соединений;	
процессов;	борудование, режимные характеристики и методы к	·
природных соед	эффективность технологического процесса производст инений;	ва продуктов на основе
	ми методами исследования органических соединений и их нического синтеза;	с применения в технологии
2) методами ко	нтроля процесса производства продуктов на основе приро оверки состояния оборудования на различных участках пр	
ПК-3	способность использовать современные приборы и	1,2
	методики, организовывать проведение экспериментов и испытаний, проводить их обработку и анализировать	
	их результаты результаты обучения	
211271.		

- 1) современные методы проведения химико-технологических процессов;
- 2) новейшие достижения современной химической технологии природных органических веществ;
- 3) принципиальные технологические схемы получения природных органических веществ
- 4) главные области применения природных органических веществ.

Уметь:

Код компетенции Формулировка компетенции	Этап формирования
---	-------------------

- 1) выбирать оборудование, режимные характеристики и методы контроля технологических процессов;
- 2) оценивать эффективность технологического процесса производства природных органических веществ;
- 3) выбирать наиболее рациональные технологические схемы переработки сырья с учетом требований безопасности жизнедеятельности человека, снижения количества сбросов и выбросов и энергосбережения.

Владеть:

- 1) современными методами исследования органических веществ и их применения в технологии тонкого органического синтеза;
- 2) современными методами организации лабораторных и промышленных испытаний

1.5. Дисциплины (практики) образовательной программы, в которых было начато формирование компетенций, указанных в п.1.4:

Дисциплина базируется на компетенциях, сформированных на предыдущем уровне образования.

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Объ	ьем (ча	сы)
Наименование и содержание учебных модулей, тем и форм контроля	очное обучение	очно- заочное обучение	заочное обучение
Учебный модуль 1. Бифункциональные природные соединения			
Тема 1. Дикарбоновые кислоты Кислоты: щавелевая, малоновая, янтарная и глутаровая. Особенности химического поведения: образование двух рядов (моно- и ди-) функциональных производных по карбоксильной группе. Двухступенчатая диссоциация дикарбоновых кислот. Декарбоксилирование щавелевой и малоновой кислот при нагревании. Синтезы карбоновых кислот на основе диэтилмалоната. Конденсация ацетил-SKoA с малонил- SKoA как один из этапов биосинтеза жирных кислот. Окислительное дегидрирование янтарной кислоты в фумаровую под действием ФАД — одна из стадий цикла Кребса. Образование пятичленных и шестичленных циклических ангидридов при нагревании янтарной и глутаровой кислот. Образование внутрикомплексных соединений хелатного типа с металлами переменной валентности (Cu²+).	4		
Тема 2. Гидроксикислоты. Гидроксикислоты: Д-глицериновая, молочная, яблочная, лимонная кислоты. Пантовая и (+)-мевалоновая кислоты. Ароматические гидроксикислоты: хинная и шикимовая. Стереоизомерия на примере молочной и винных кислот. Реакции по гидроксильной группе: с галогеноводородными кислотами, образование сложных эфиров, окисление гидроксильной группы до карбонильной как одно из направлений биосинтеза оксокислот (на примере окисления молочной кислоты до пировиноградной). Реакции по карбоксильной группе: образование солей, сложных эфиров. Салициловая кислота и ее производные: по карбоксильной группе — метиловый эфир салициловой кислоты (салол) и по гидроксильной группе — ацетилсалициловая кислота (аспирин). Химические свойства, обусловленные участием двух функциональных групп: образование межмолекулярных сложных эфиров (лактидов) из α-гидроксикислот и внутримолекулярных сложных эфиров (лактонов) из γ-гидроксикислот. Дегидратация β-гидроксикислот. Образование внутрикомплексных соединений с металлами переменной валентности (Cu²+). Образование пирофосфата 2-метил-бут-1-ен-4-ола путем синхронного элиминирования фрагментов CO₂ и H₂O от пирофосфата мевалоновой кислоты как основной путь формирования изопреноидных углеродных систем.	6		

	Объ	ьем (ча	сы)
Наименование и содержание учебных модулей, тем и форм контроля	очное обучение	очно- заочное обучение	заочное обучение
Образование шикимовой кислоты из хинной — ключевого интермедиата биосинтеза ароматических кислородсодержащих соединений (на примере биосинтеза фенолокислот: п-гидроксибензойной и галловой). Кислоты ароматического ряда и их производные как лекарственные средства (на примере салициловой, п-аминобензойной кислот и сульфониламидов).			
Тема 3. Оксокислоты: глиоксалевая, пировиноградная, ацетоуксусная, мезоксалевая, щавелевоуксусная, с-оксоглутаровая и левулиновая кислоты. Биосинтез оксокислот путем дегидрирования гидроксикарбоновых кислот с помощью дегидрогеназ с окисленной формой кофермента НАД+ (на примере получения пировиноградной кислоты). Получение этилового эфира ацетоуксусной кислоты из этилацетата сложноэфирной конденсацией по Кляйзену. Реакции нуклеофильного присоединения по карбонильной группе оксокислот: воды, гидроксиламина, фенилгидразина. Присоединение аммиака как одно из направлений биосинтеза аминокислот (на примере получения аланина из пировиноградной кислоты). Образование важнейшего интермедиата биосинтетических реакций - ацетил-кофермента А при взаимодействии пировиноградной кислоты с коферментом А (HSKoA). Реакции оксокислот по карбоксильной группе: образование солей и сложных эфиров. Декарбоксилирование пировиноградной кислоты in vivo под действием декарбоксилазы в присутствии коферментов НАД+ и HSKoA. Самопроизвольное декарбоксилирование ацетоуксусной кислоты. Реакции конденсации ильдольного типа: присоединение С-нуклеофила и протона по кратной связи карбонильной группы с образованием гидроксипроизводного дикарбоновой кислоты с разветвленным углеродным скелетом (на примере конденсации двух молекул ацетил-кофермента A). Образование внутрикомплексных соединений с металлами переменной валентности (Сu²+). Кето-енольная таутомерия. Синтезы кетонов и карбоновых кислот из ацетоуксусного эфира.	6		
Текущий контроль 1 (Коллоквиум)	2		
Учебный модуль 2. Углеводы Тема 4. Строение моносахаридов. Стереоизомерия моносахаридов. Ассиметрический атом углерода, энантиомеры и диастереомеры. Обозначение конфигурации ассиметрических атомов углерода по системе Кана-Прелога-Ингольда (R, S - номенклатура). Таутомерия моносахаридов. Открытые и полуацетальные формы моносахаридов: α- и β - аномеры. Пиранозные и фуранозные формы. Механизм взаимных переходов тау-томерных форм моносахаридов в растворах. Мутаротация.	4		
Тема 5. Реакции моносахаридов. Енолизация моносахаридов в кислых и щелочных средах с образованием ендиола. Превращения моносахаридов в щелочной среде. Изомеризация ендиола в слабощелочной среде. β - Расщепление ендиола при действии концентрированных растворов щелочей (ретроальдольный распад сахаров). Распад гексоз до глицеринового альдегида, и диоксиацетона с последующим образованием пировиноградного альдегида. Образование D,L - молочной кислоты из пировиноградного альдегида. Образование в ходе реакций по гидроксильным группам смеси производных α- и β- аномеров пиранозной и фуранозной форм моносахаридов вследствие мутаротации последних в растворах. Реакции полуацетального гидроксила. Образование О-гликозидов. Устойчивость гликозидов в щелочных средах. Механизм гидролиза гликозидов в кислых средах.	10		
Тема 6 Фотосинтез.	10		

	Объ	ьем (ча	сы)
Наименование и содержание учебных модулей, тем и форм контроля	очное обучение	очно- заочное обучение	заочное обучение
Световая фаза фотосинтеза. Окислительно-восстановительные системы $CO_2/(CH_2O)$ [ϕ = $-$ 0.43B] и O_2/H_2O [ϕ = $+$ 0.83B]. Передача электронов и протонов из воды к окислительно-восстановительной системе $HAД\Phi^+/HAД\Phi(H)+H^+$. Фотосистемы I (P^{700}) и II (P^{680}) как поставщики энергии, необходимой для переноса электронов против электрохимического градиента. Структура светособирающих пигментов на примере хлорофилла. Темновая фаза фотосинтеза: механизм цикла Кальвина. Три основных типа химических превращений в цикле Кальвина: енолизация с последующей изомеризацией, перенос кетольной группы (CH_2OH-CO) и конденсация альдольного типа. Стехиометрия реакций в цикле Кальвина.	1		
Текущий контроль 2 Защита отчета по лабораторной работе	1		
Учебный модуль 3. Липиды			
Тема 7. Классификация липидов Омыляемые липиды: простые (жиры, масла, воски), сложные (фосфолипиды) Природные животные и растительные жиры как сложные эфиры глицерина и высших прямоцепочечных (жирных) карбоновых кислот: насыщенных —миристиновой (С ₁₃ H ₂₇ COOH), пальмитиновой (С ₁₅ H ₃₁ COOH), стеариновой (С ₁₇ H ₃₅ COOH) и ненасыщенных — олеиновой (С ₁₇ H ₃₃ COOH, 18:1 (9Z)), линолевой (С ₁₇ H ₃₁ COOH, 18:2 (9Z,12Z)) и линоленовой (С ₁₇ H ₂₉ COOH, 18:3 (9Z, 12Z, 15Z)). Фосфолипиды как производные фосфатидовых кислот, в которых фосфатная группировка этерифицирована с одной стороны диацилглицерином, с другой стороны — β-этаноламином [НОСН ₂ СН ₂ NH ₂ (кефалины)], холином [НОСН ₂ CH ₂ N+(CH ₃) ₃ (лецитины)], серином [НОСН ₂ CH(NH ₂)COOH (фосфатидилсерины)]. Наличие одновременно гидрофобных (радикалы жирных кислот) и гидрофильных (фосфат-аминная группировка) участков фосфолипидов как условие образование липидного слоя на границе раздела жидких фаз (водалипид) и двойного липидного слоя — основы биологических мембран.	4		
Тема.8. Биосинтез липидов Биосинтез жирных кислот: Основные стадии:	6		
Тема 9. Дыхание. Катаболизм углеводов и жирных кислот. Дыхание как окислительный процесс, в котором углеводы, жиры и другие сложные молекулы расщепляются до CO ₂ и H ₂ O, а высвобождаю-щаяся при этом энергия запасается будучи использована для образования АТФ из АДФ и ортофосфата (окислительное фосфорилирование). Катаболизм глюкозы - гликолиз. Ферментативный гидролиз углеводов в организме до глюкозы и фруктозы с последующим превращением последних в пировиноградную кислоту:	10		

	Объ	ьем (ча	сы)
Наименование и содержание учебных модулей, тем и форм контроля	очное обучение	очно- заочное обучение	заочное обучение
I этап: превращения гексоз. II этап: превращения триоз III этап: превращения оксокарбоновых кислот Катаболизм жирных кислот - β-Окисление жирных кислот до ацетилкофермента А (жирные кислоты участвуют в цикле в виде производных кофермента А). Общий этап для катаболизма углеводов и жиров: реакции цикла Кребса (цикл лимонной кислоты или ди- и трикарбоновых кислот) - окисление ацетилкофермента А до диоксида углерода и воды:			
Текущий контроль 3 Коллоквиум	1		
Текущий контроль 3 Защита отчета по лабораторной работе	1		
Учебный модуль 4. Аминокилоты, пептиды и белки.		· · · · ·	
Важнейшие природные α-аминокислоты L-ряда: а) с неполярным (гидрофобным) заместителем: аланин (Ala), валин (Val), лейцин (Leu), изолейцин (Ile), пролин (Pro), фенилаланин (Phe), триптофан (Trp), метионин (Met); б) с полярным (гидрофильным) заместителем: глицин (Gly), серин (Ser), треонин (Thn), аспарагин (Asn), глутамин (Gln); в) кислотные: аспарагиновая кислота (Asp), глутаминовая кислота (Glu), цистеин (Cys), тирозин (Tyr); г) основные: лизин (Lys), аргинин (Arg), гистидин (His). Заменимые и незаменимые аминокислоты. Стереохимия α-аминокислот. Биосинтез α-аминокислот из оксокарбоновых путем взаимодействия последних с аммиаком с последующим восстановлением имино – группы. Реакция трансаминирования между α-аминокислотой (донор аминогруппы) и α-оксокислотой (акцептор аминогруппы). Кофермент пиридоксальфосфат как переносчик аминогруппы. Кислотно – основные свойства аминокислот. Прототропная таутомерия: таутомер с неионизированной структурой и таутомер с биполярной структурой. Изоэлектрическая точка (рl), зависимость формы нахождения аминокислоты в водном растворе (молекулы, катиона или аниона) в зависимости от рН среды. Взаимодействие таутомера с биполярной структурой с кислотами и щелочами – образование двух типов солей. Электрофильно — нуклеофильные свойства аминокислот. Аминокислоты как доноры ацильных групп (электрофильные свойства за счет карбонильного фрагмента), нуклеофильные свойства аминокислот, обусловленные наличием неподеленной электронной пары на атоме азота.	6		
Тема 11. Пептиды Пептиды как продукты поликонденсации α-аминокислот, остатки которых соединены между собой пептидными (амидными) группами —CO-NH Планарная транс-структура пептидной группы с трансоидной конформацией в расположении заместителей R аминокислотных остатков. Олигопептиды (до 10 остатков аминокислот) и полипептиды (до 100 остатков аминокислот). Образование дипептидов при ацилировании аминокислот с защищенной карбоксильной группой и со свободной аминогруппой аминокислотой с защищенной аминогруппой и с активированной карбонильной группой с последующим снятием защитных групп. Обратимая защита аминогруппы с помощью карбобензоксигруппы С ₆ H ₅ -CH ₂ -O-CO-, а также третичнобутоксикарбонильной группы (СН ₃) ₃ C-O-CO- Защита карбоксильной группы путем перевода в сложноэфирную (например, третичнобутиловый эфир). Карбодиимидный метод синтеза полипептидов. Комплексообразующие свойства. Пептиды как полидентатные лиганды — комплексооны. Транспорт через липидные клеточные мембраны катионов К+ с помощью пептида валиномицина. Транспорт через липидные клеточные мембраны катионов Na+ с помощью циклического пептида грамицидина S. Окислительно — восстановительные свойства. Тиол — дисульфидное равновесие трипептида глутатиона (Глу–Цис–Гли) за счет тиольных групп цистеина. Защитная функция глутатиона в организме: восстановленная форма GSH как антиоксидант, окисленная GS — SG как ловушка радикальных частиц восстановителей.	6		

	Объ	ьем (ча	сы)
Наименование и содержание учебных модулей, тем и форм контроля	очное обучение	очно- заочное обучение	заочное обучение
Тема 12. Белки Определение первичной структуры белка : аминокислотного состава и последовательности распределения аминокислотных остатков в полимерной белковой цепочке. Основные типы взаимодействия между полипептидными цепями и различными участками одной и той же полипептидной цепи: ион-ионное, водородная связь, гидратация полярных групп, дисульфидная связь, взаимодействия Ван-дер-Ваальса между неполярными заместителями, гидрофобные взаимодействия, донорно-акцепторная связь между ионом комплексообразователя и лигандными группами белка. Вторичная структура белка, обусловленная водородными связями >C=O···H·N<: α-спираль (кератин волос, миозин мышц), β-складчатая структура белка (фиброин шелка). Неупорядоченная структура отдельных фрагментов белка. Третичная структура белка как самоорганизация белковой цепи в пространстве в строго определенное трехмерное образование в результате взаимодействия аминокислотных радикалов между собой и с молекулами окружающего раствора. Роль дисульфидных связей в формировании и поддержании третичной структуры белка. Четвертичная структура белка как комплекс из нескольких полипептидных цепочек связанных между собой связями — водородными, ионными, ковалентными: дисульфидными, сложноэфирными, амидными (на примере иммуноглобупинов, четыре полипептидных фрагментов которых связаны между собой дисульфидными мостиками).	6		
Фибриллярные и глобулярные белки. Текущий контроль 4 Коллоквиум	2		
Учебный модуль 5. Нуклеиновые кислоты. Биосинтез белка			
Тема 13. Нуклеиновые кислоты Пуриновые основания: аденин и гуанин. Нуклеозиды, нуклеотиды. Биосинтез пуриновых нуклеотидов из инозит-5'-монофосфата (ИМФ). Пиримидиновые основания урацил, цитозин и тимин. Нуклеозиды, нуклеотиды. Биосинтез пуриновых нуклеотидов из уридинмонофосфата (УМФ). Нуклеиновые кислоты (ДНК и РНК) как полинуклеотиды с молекулярной массой от 20 тысяч до десятка миллиардов. Первичная структура нуклеиновых кислот как природа и последовательность нуклеотидных звеньев, связанных сложноэфирными связями между пентозами и фосфатными группами. Вторичная структура нуклеиновых кислот как двойная спираль полинуклеотидных цепей, в которых пуриновые и пиримидиновые основания обеих цепей направлены внутрь и связаны между собой водородными связями (комплементарные пары оснований в ДНК: А — Т и С — G).	10		
Тема 14. Биосинтез белка Важнейшие функции нуклеиновых кислот:	6		

	Объ	Объем (часы)		
Наименование и содержание учебных модулей, тем и форм контроля	очное обучение	очно- заочное обучение	заочное обучение	
оснований кодирующих встраивание строго определенных аминокислот в растущую цепь белка. Антикодон транспортной РНК, доставляющей аминокислоты на определенные участки информационной РНК. Соотнесение оснований кодона кодируемой аминокислоте.				
Текущий контроль 5 Коллоквиум				
Текущий контроль 5 Защита отчета по лабораторной работе				
Промежуточная аттестация по дисциплине (зачёт)	4			
ВСЕГО:	108			

3. ТЕМАТИЧЕСКИЙ ПЛАН

3.1. Лекции

Номера	Очное о	бучение	Очно-заочно	ое обучение	Заочное с	бучение
изучаемых тем	Номер семестра	Объем (часы)	Номер семестра	Объем (часы)	Номер семестра	Объем (часы)
1	1	1				
2	1	1				
3	1	1				
4	1	1				
5	1	2				
6	1	1				
7	1	2				
8	1	2				
9	1	1				
10	1	1				
11	1	1				
12	1	1				
13	1	2				
14	1	1				
	ВСЕГО:	18				

3.2. Практические и семинарские занятия

Не предусмотрены

3.3. Лабораторные занятия

Номера изучаемых	Наименование	Очное обучение		Очно-заочное обучение		Заочное обучение	
тем	лабораторных занятий	Номер семестра	Объем (часы)	Номер семестра	Объем (часы)	Номер семестра	Объем (часы)
5	Синтез пентаацетата D- глюкозы	1	9				
6	Синтез оксима D-маннозы	1	9				
9	Синтез фенилозазона D- глюкозы	1	9				
13	Выделение кофеина из чайных листьев	1	9				
		ВСЕГО:	36				

4. КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Не предусмотрено

5. ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ ОБУЧАЮЩЕГОСЯ

Номера учебных	Форма	Очное обучение		Очно-заочное обучение		Заочное обучение	
модулей, по которым проводится контроль	контроля знаний	Номер семестра	Кол-во	Номер семестра	Кол-во	Номер семестра	Кол-во
1,2,3,4,5	Коллоквиум	1	5				
2,3,5	Защита отчета по лабораторной работе	1	3				

6. САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ

Виды самостоятельной работы	Очное о	бучение	Очно-з обуч		Заочное обучение	
обучающегося	Номер семестра	Объем (часы)	Номер семестра	Объем (часы)	Номер семестра	Объем (часы)
Усвоение теоретического материала	1	32				
Подготовка к лабораторным занятиям	1	18				
Подготовка к зачету	1	4		•		
	ВСЕГО:	54				

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

7.1. Характеристика видов и используемых инновационных форм учебных занятий

Наименование		Объем занятий в инновационных формах (часы)			
видов учебных занятий	Используемые инновационные формы	очное обучение	очно- заочное обучение	заочное обучение	
Лабораторные занятия	Проведение учебного эксперимента на лабораторной установке самостоятельно и под руководством преподавателя; наблюдение за процессом и оценка полученных результатов; работа в команде.	8			
	всего:	8			

7.2. Система оценивания ус <mark>і</mark> аттестации	тева	емости и достижений обучающихся для про	межуточно	Й
традиционная	X	балльно-рейтинговая		

8. ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Учебная литература

- а) основная учебная литература
 - 1. Реутов О.А. Органическая химия. Часть 2 [Электронный ресурс]/ Реутов О.А., Курц А.Л., Бутин К.П.— Электрон. текстовые данные.— М.: БИНОМ. Лаборатория знаний, 2014.— 624 с. Режим доступа: http://www.iprbookshop.ru/4601.
 - 2. Коваленко Л.В. Биохимические основы химии биологически активных веществ [Электронный ресурс]: учебное пособие/ Коваленко Л.В.— М.: БИНОМ. Лаборатория знаний, 2015.— 230 с. Режим доступа: http://www.iprbookshop.ru/4608.
- б) дополнительная учебная литература
 - 3. Смит В.А. Основы современного органического синтеза [Электронный ресурс]: учебное пособие/ Смит В.А., Дильман А.Д.— М.: БИНОМ. Лаборатория знаний, 2015.— 751 с. Режим доступа: http://www.iprbookshop.ru/4591.

4. Журавская О.А. Основы биоорганической химии [Электронный ресурс]: учебное пособие/ Журавская О.А.— Самара: PEABИ3, 2010.— 52 с. - Режим доступа: http://www.iprbookshop.ru/10151.

8.2. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

1. Смит В.А. Основы современного органического синтеза [Электронный ресурс]: учебное пособие/ Смит В.А., Дильман А.Д.— М.: БИНОМ. Лаборатория знаний, 2015.— 751 с. - Режим доступа: http://www.iprbookshop.ru/4591.

8.3. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины

- 1. Химический информационный портал [Электронный ресурс].URL: http://www.chemnet.ru
- 2. Химический информационный портал [Электронный ресурс]. URL: http://www.chemnavigator.com
- 3. Библиографическая и реферативная база данных Scopus [Электронный ресурс]. URL: http://www.scopus.com).
- 4. Информационная система «Единое окно доступа к образовательным ресурсам» [Электронный ресурс]. URL: http://window.edu.ru/)

8.4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 1. Microsoft Windows 8.1
- 2. Microsoft Office Professional 2013

8.5. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Лекционная аудитория с мультимедийным учебным комплексом (ноутбук, медиапроектор);
- 2. Учебные лаборатории по химии и технологии органических веществ. Перечень используемого лабораторного оборудования: приборы (испаритель роторный LABOROTA-4000), химическая посуда.

8.6. Иные сведения и (или) материалы

Компьютерные презентации на темы: "Катаболизм углеводов и жиров их роли в природе", "Структура и свойства аминокислот, пептидов и белков", "Детальное рассмотрение механизма передачи наследственной информации".

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Виды учебных	
занятий и	
самостоятельная	Организация деятельности обучающегося
работа	
обучающихся	
Лекции	Лекции обеспечивают теоретическое изучение дисциплины. На лекциях
	излагается основное содержание курса, иллюстрируемое конкретными
	примерами, широко используется зарубежный и отечественный опыт по соответствующей тематике.
	Освоение лекционного материала обучающимся предполагает следующие
	виды работ:
	 проработка рабочей программы в соответствии с целями и задачами, структурой и содержанием дисциплины;
	 конспект лекций: кратко, схематично, последовательно фиксировать основные положения, выводы и формулировки; помечать важные мысли, выделять ключевые слова, термины.
	 Проверка терминов, понятий: осуществлять с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь;
	 работа с теоретическим материалом (конспектирование источников): найти ответ на вопросы в рекомендуемой литературе.
	Если самостоятельно не удается разобраться в материале, необходимо
	сформулировать вопрос и задать преподавателю на консультации или на
	практическом занятии.

Виды учебных занятий и самостоятельная работа обучающихся	Организация деятельности обучающегося
Лабораторные занятия	Лабораторные занятия способствуют развитию практических навыков владения изучаемыми методами, оборудованием, технологиями и др. в процессе взаимодействия со специально разработанными модельными установками и/или образцами реально действующего оборудования, предполагают проведение учебного эксперимента на лабораторной установке (самостоятельно либо под руководством преподавателя); наблюдение за процессом. На лабораторных работах обучающийся изучает процесс или объект на основе взаимодействия с ним или его моделью (натурной или математической). В результате проведения лабораторного занятия обучающийся должен либо понять принципы устройства и работы изучаемого предмета (прикладные работы), либо освоить методику исследования предметов сходного типа (исследовательские работы).
Самостоятельная работа	Данный вид работы предполагает расширение и закрепление знаний, умений и навыков, усвоенных на аудиторных занятиях путем самостоятельной проработки учебно-методических материалов по дисциплине и другим источникам информации; подготовки к коллоквиумам и зачету. Самостоятельная работа выполняется индивидуально, а также может проводиться под руководством преподавателя. При подготовке к зачету необходимо ознакомиться с демонстрационным вариантом задания (перечнем вопросов, пр.), проработать конспекты лекций, рекомендуемую литературу, получить консультацию у преподавателя, подготовить презентацию материалов.

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ 10.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

10.1.1. Показатели оценивания компетенций на этапах их формирования

Код компетенции (этап формирования)	Показатели оценивания компетенций	Наименование оценочного средства	Представление оценочного средства в фонде
ОПК-3 (1)	1. Ориентируется в современном оборудовании, применяемом для извлечения и синтеза природных соединений. 2. Способен выбирать оборудование, режимные характеристики и методы контроля технологических процессов. 3. Применяет методы контроля процесса производства продуктов на основе природных соединений.	1. Устное собеседование 2. Практическое задание.	1. Перечень вопросов к зачету (28 вопросов) 2. Практические задания (20 заданий).
ПК-3 (1, 2)	1. Определяет новейшие достижения современной химической технологии органических веществ. 2. Выбирает наиболее рациональные технологические схемы переработки сырья с учетом требований безопасности жизнедеятельности человека, снижения количества сбросов и выбросов и энергосбережения. 3. Использует современные методы организации лабораторных исследований.	1. Устное собеседование 2. Практическое задание.	1. Перечень вопросов к зачету (28 вопросов) 2. Практические задания (20 заданий).

10.1.2. Описание шкал и критериев оценивания сформированности компетенций

Критерии оценивания сформированности компетенций

Оценка по	Критерии оценивания сформированности компетенций
традиционной шкале	Устное собеседование
Зачтено	Обучающийся показывает всестороннее и глубокое знание достаточный уровень знаний химии природных соединений, свободно ориентируется в основных понятиях, терминах и определениях; усвоил основную и знаком с дополнительной литературой; может свободно составляет уравнения реакций; проявляет творческие способности в использовании учебного материала.
Не зачтено	Обучающийся не имеет достаточного уровня знания дисциплины; не может написать основные реакции, лежащие в основе химии природных соединений; плохо ориентируется в основных понятиях и определениях; плохо знаком с основной литературой; допускает при ответе на зачете существенные ошибки и не может устранить их даже под руководством преподавателя.

10.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

10.2.1. Перечень вопросов к зачету, разработанный в соответствии с установленными этапами формирования компетенций

№ п/п	Формулировка вопросов	№ темы
1	Производные оксокислот на примере ацетоуксусного эфира. Синтезы карбоновых кислот и кетонов на его основе. Кето-енольная таутомерия.	4
2	Методы получения и химические свойства аминокислот на примере аланина (2-амино- пропановой кислоты).	3
3	Методы получения и химические свойства гидроксикислот на примере 2-гидрокси- пропановой (молочной) кислоты. Отношение 2-,3- и 4-гидроксикислот к нагреванию.	2
4	Приведите уравнения β-окисления пальмитиновой кислоты.	7
5	Покажите механизм взаимодействия эритрозо-4-фосфата с дигидроксиацетонфосфатом, приводящее к седогептулозо -1,7- бисфосфату.	2
6	Реакции окисления-восстановления биоорганических соединений осуществляется за счет коферментов оксидоредуктаз, которые могут существовать в двух сопряженных формах: окисленной и восстановленной. Приведите восстановленную форму для флавинадениндинуклеотида: ФАД ↔ ФАД(2H)	6
7	Получить из пировиноградной кислоты Ацетил-S-CoA и использовать его для синтеза CH ₃ -(C(O)-CH ₂) ₇ -C(O)-S-CoA. В условиях щелочного катализа покажите возможные пути циклизации полученного соединения.	3
8	Покажите механизм восстановления 3-фосфата Д-глицериновой кислоты до 3-фосфата Д-глицеринового альдегида с последующей его изомеризацией до фосфата дигидрокси-ацетона. Проведите перекрестную конденсацию между карбонильными соединениями с образованием 1,6-дифосфата Д-фруктозы.	2
9	В условиях кислотно-основного катализа рассмотрите механизм фиксации диоксида углерода 1,5-дифосфатом рибулозы с последующим расщеплением кетокарбоновой кислоты на 3-фосфаты глицериновой кислоты.	2
10	Альдольное расщепление фруктозо-1,6-дифосфата до глицеральдегид-3-фосфата и дигидроксиацетонфосфата.	5
11	Окислительное декарбоксилирование 2 – оксоглутарата, происходящее под действием НАД⁺ и HSK₀A – как завершающий этап окисления ацетильного остатка ацетилкофермента A до CO₂ и H₂O.	8,9
12	Реакции окисления-восстановления биоорганических соединений осуществляется за счет коферментов оксидоредуктаз, которые могут существовать в двух сопряженных формах: окисленной и восстановленной. Приведите восстановленную форму для никотинамидаденин-динуклеотидфосфата: НАДФ⁺ ↔ НАДФ(Н).	3,8
13	На примере взаимодействия аланина с 2-оксо-3-метилпентановой кислотой покажите механизм реакции трансаминирования в присутствии пиридоксаль-фосфата.	10
14	Методы получения и свойства оксокислот на примере пировиноградной кислоты.	3,5
15	Нуклеофильное присоединение ацетилкофермента А по карбонильной группе оксалоацетата с последующим гидролизом тиоэфирной связи, отщеплением	8,9

	кофермента А и образованием цитрата	
16	Биосинтез триглицерида, первая гидроксильная группа которого этерифицирована	1,7
	стеариновой кислотой, вторая и третья - пальмитиновой кислотой.	
17	Покажите фрагмент РНК состоящий из двух нуклеотидов имеющих в качестве	13,1
	агликонов аденин и урацил, причем связь между моносахавридными звеньями	4
	осуществляется за счет образования сложных эфиров ортофосфорной кислоты и	
	спиртовых гидроксилов у С₃ и С₅ моносахаридных звеньев.	
18	Покажите фрагмент ДНК состоящий из двух нуклеотидов имеющих в качестве	13
	агликонов гуанин и тимин, причем связь между моносахаридными звеньями	
	осуществляется за счет образования сложных эфиров ортофосфорной кислоты и	
	спиртовых гидроксилов у С₃ и С₅ моносахаридных звеньев.	
19	В образовании нуклеозидов (N-гликозидов Д-рибозы и 2-дезокси-Д-рибозы) участвуют	13,1
	5 азотсодержащих гетероциклов: аденин, гуанин, урацил, тимин, цитозин. Представьте	4
	пары азотистых агликонов осуществляющих наиболее прочное связывание между	
	собой посредством водородных связей	
20	Построить фрагмени темплатной ДНК, комплементарный фрагменту матричной ДНК:	14
	аденозин-5	
21	Состояние эйфории вызывает образование в организме в момент нервного	14
	возбуждения метионин -энкефалина - так называемого «витамина счастья» : NH ₂ -Tyr-	
	Gly-Gly-Phe-Met-COOH. Приведите строение участка ДНК, кодирующего синтез этого	
	пептида.	
22	Состояние эйфории вызывает образование в организме в момент нервного	14
	возбуждения лейцин-энкефалина - так называемого «витамина счастья» : NH ₂ -Tyr-Gly-	
	Gly-Phe-Leu-COOH. Приведите строение участка ДНК, кодирующего синтез этого	
	пептида.	
23	К нейрогипофизным гормонам, регулирующим, в частности, дыхание относится	8,13
	вазопрессин: NH ₂ Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Leu-Arg-CONH ₂ . Приведите строение	,
	участка ДНК, кодирующего синтез этого пептида.	
24	К нейрогипофизным гормонам, применяемым, в частности, в акушерстве и гинекологии	8,13
	относится окситоцин: NH ₂ Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Leu-Arg-CONH ₂ . Приведите	-, -
	строение участка ДНК, кодирующего синтез этого пептида.	
25	Какой полипептид может кодировать следующая последовательность кодонов	11,1
	матричной ДНК: ATG-CCA-GTA-GGC-CAC-TTG-TCA?	2,14
26	Получить трипептид глицин-валин-изолейцин.	11
27	Получить трипептид лейцин-изолейцин-фенилаланин.	11
28	Получить трипептид эланин-глицин-треонин	11
20	полу иль триполтид алагин тлицин треопин	- 11

10.2.2 Вариант типовых задач, разработанных в соответствии с установленными этапами формирования компетенций

№ п/п	Условия типовых заданий	Ответ
1	1 дм ² поверхности листа березы ассимилирует за 1 час 20 мг CO ₂ . Сколько времени понадобится для дерева с кроной площадью 30 м ² для синтеза 300 г	7.3 часа 43.6 г
	целлюлозы и какой объем кислорода при этом выделится?	кислорода
2	Получить из Д-глюкозы пировиноградную кислоту и использовать ее для синтеза Ацетил-S-CoA и в дальнейшем стеариновой кислоты (CH ₃ -(CH ₂) ₁₆ -COOH) и миристиновой кислоты (CH ₃ -(CH ₂) ₁₂ -COOH). Сколько грамм Д-глюкозы надо использовать для синтеза 350 г липида, в котором две гидроксильные группы глицерина этерифицированы стеариновой кислотой, а одна - миристиновой?	800 г

10.3. Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности), характеризующих этапы формирования компетенций

10.3.1. Условия допуска обучающегося к сдаче зачета и порядок ликвидации академической задолженности

Поло обучающихо		о прове	дении т	гекущего	контроля	успеваемости	И	тромежуточной	аттестаці	ии		
10.3.2. Форма проведения промежуточной аттестации по дисциплине												
устная	Х	Г	исьменн	ная	комп	ьютерное тесті	иров	зание	иная*			
10.3.3. Oc	обенн	ости пров	едения	зачета:	Время на	подготовку отв	вета	30 минут.				